Trivellore Eachambadi Raghunathan, Ph.D.

Trivellore Raghunathan

Chair and Professor, Department of Biostatistics

Research Professor, Survey Research Center, ISR

Research Professor, Joint Program in Survey Methodology, University of Maryland

M4071 SPH II      Vcard icon
1415 Washington Heights
Ann Arbor, Michigan 48109-2029

Room 4067, ISR      Vcard icon
426 Thompson Street
Ann Arbor, Michigan 48106-1248

SPH: (734) 615-9832; ISR: (734) 647-4619; Fax: (734) 763-2215

E-mail: teraghu@umich.edu

Website(s): Personal Website; Google Scholar

Professional Summary

Trivellore Raghunathan (Raghu) is a Professor of Biostatistics and a Research Professor at the Institute for Social Research. He is a Research Professor in the Joint Program in Survey Methodology at the University of Maryland. He is the Director of Biostatistics Collaborative and Methodology Research Core (BCMRC), a research unit designed to foster collaborative and methodological research with the researchers in other departments in the School of Public Health and other allied schools. He is the Director of Biostatistics and Measurement Core for the Michigan CTSA located at Michigan Institute for Clinical and Health Research (MICHR). He is an Associate Director of the Center for Research on Ethnicity, Culture and Health (CRECH). He is a faculty member at the Center of Social Epidemiology and Population Health (CSEPH). He is also affiliated with the University of Michigan Transportation Research Institute (UMTRI). He received his Ph.D. in Statistics from Harvard University in 1987. Before joining the University of Michigan in 1994, he was on the faculty in the Department of Biostatistics at the University of Washington. He continues to be involved in several projects at the Cardiovascular Health Research Unit (CHRU) at the University of Washington. His research interests are in the analysis of incomplete data, multiple imputation, Bayesian methods, design and analysis of sample surveys, small area estimation, confidentiality and disclosure limitation, longitudinal data analysis and statistical methods for epidemiology. He has developed a SAS based software for imputing the missing values for a complex data set and can be downloaded from www.iveware.org.

Courses Taught

BIOSTAT652: Design of Experiments    Syllabus (PDF)
BIOSTAT 581: Longitudinal Models and Repeated Measures

Education

Ph.D., Statistics, Harvard University, 1987
M.S., Statistics, Miami University, 1983
M.Sc., Statistics, Nagpur University, 1979
B.Sc., Nagpur University, 1977

Research Interests & Projects


My primary research interest is in developing methods for dealing with missing data in sample surveys and in epidemiological studies. The methods are motivated from a Bayesian perspective but do have desirable frequency or repeated sampling properties. The analysis of incomplete data from practical sample surveys poses additional problems due to extensive stratification, clustering of units and unequal probabilities of selection. The model-based approach provides a framework to incorporate all the relevant sampling design features in dealing with unit and item nonresponse in sample surveys. There are important computational challenges in implementing these methods in practical surveys. I have developed SAS based software, IVEware, for performing multiple imputation analysis and the analysis of complex survey data.

My other research interests include Bayesian methods, methods for small area estimation, combining information from multiple surveys, measurement error models, longitudinal data analysis, privacy, confidentiality and disclosure limitations and statistical methods for epidemiological studies. My applied interests include cardiovascular epidemiology, social epidemiology, health disparity, health care utilization, and social and economic sciences.

I also have an appointment in the Survey Methodology Program at the Institute for Social Research. The program, a multidisciplinary team of sociologists, statisticians and psychologists, provides an opportunity to address methodological issues in: nonresponse, interviewer behavior and its impact on the results, response or measurement bias and errors, noncoverage, respondent cognition, privacy and confidentiality issues and data archiving. The Survey Methodology Program has a graduate program offering masters and doctoral degrees in survey methodology.

Selected Publications

Search PubMed for publications by Trivellore Raghunathan >>

Wagner J., Raghunathan T.E. (2010). A new stopping rule for surveys. Statistics in Medicine, 29, 1014-1024.

Elliott, Micahel R., Raghunathan T.E. and Li Y. (2010). Bayesian inference for causal mediation effects using principal stratification with dichotomous mediators and outcomes. Biostatistics, 11 (2), 353-372.

Schenker N., Raghunathan T.E. and Bondarenko I. (2010). Improving on Analyses of Self-Reported Data in a Large-Scale Health Survey by Using Information from an Examination-Based Survey. Statistics in Medicine, 29, 533-545.

Sanchez B.N., Raghunathan T.E., Diez Roux A.V., Zhu Y., Lee O. (2008). Combining datat from primary and ancillary surveys to assess the association between neighborhood-level characteristics and health outcomes: the Multi-Ethnic Study of Artherosclerosis. Statistics in Medicine, 27 (27), 5745-63.

Xie D., Raghunathan T.E., Lepkowski J.M. (June, 2007). Estimation of the Proportion of Overweight Individuals in Small Areas- a Robust Extension of the Fay-Herriot Model. Statistics in Medicine, 26 (13), 2699-2715.

Raghunathan, T.E., Xie, D., Schenker, N, Parsons, V., Davis, W., Rancourt, E., Dodd, K. (2007). Combining Information from Multiple Surveys for Small Area Estimation: A Bayesian Approach. Journal of American Statistical Association, 102, 474-486.

Schenker, N., Raghunathan, T.E. (2007). Combining information from multiple surveys to improve measures of health. Statistics in Medicine, 26, 1802-1811.

Schenker, N., Raghunathan, T.E., Chiu, P.L., Makuc, D.M., Zhang, G., Cohen, A.J. (2006). Multiple imputation of missing income data in the National Health Interview Survey. Journal of American Statistical Association, 101, 924-933.

Raghunathan T.E., Rubin D.B., Reiter J.E. (2003). Multiple impuation for disclosure limitation. Journal of Official Statistics, 19, 1-16.

Raghunathan T.E., Lepkowski J.M., VanHoewyk J., Solenberger P., (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85-95.

Professional Affiliations

American Statistical Association